406 research outputs found

    Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling

    Get PDF
    BACKGROUND: In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. RESULTS: This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. CONCLUSION: A screen for suppressors of PI3K mutant phenotypes identified activating mutations in two known pathway components, providing insights into their regulation. In particular, the interdependence of akt-1 and pdk-1, even in activated forms, supports the existence of AGE-1-independent pathways for these phospholipid-dependent kinases. Phenotypic analysis of these alleles shows that the larval and adult outputs of AGE-1/PI3K are fully separable in these mutants

    Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan

    Get PDF
    Much excitement has arisen from the observation that decrements in insulin-like signaling can dramatically extend lifespan in the nematode, Caenorhabditis elegans, and fruitfly, Drosophila melanogaster. In addition, there are tantalizing hints that the IGF-I pathway in mice may have similar effects. In addition to dramatic effects on lifespan, invertebrate insulin-like signaling also promotes changes in stress resistance, metabolism and development. Which, if any, of the various phenotypes of insulin pathway mutants are relevant to longevity? What are the genes that function in collaboration with insulin to prolong lifespan? These questions are at the heart of current research in C. elegans longevity. Two main theories exist as to the mechanism behind insulin's effects on invertebrate longevity. One theory is that insulin programs metabolic parameters that prolong or reduce lifespan. The other theory is that insulin determines the cell's ability to endure oxidative stress from respiration, thereby determining the rate of aging. However, these mechanisms are not mutually exclusive and several studies seem to support a role for both. Here, we review recently published reports investigating the mechanisms behind insulin's dramatic effect on longevity. We also spotlight several C. elegans genes that are now known to interact with insulin signaling to determine lifespan. These insights into pathways affecting invertebrate lifespan may provide a basis for developing strategies for pharmacological manipulation of human lifespan

    INHERITANCE STUDIES ON SEX EXPRESSION UNDER VARRYING ENVIRONMENTS IN CASTOR [Ricinus communis (L.)]

    Get PDF
    ABSTRACT: Sex expression in castor for three qualitative characters viz., number of monoceious plant, number of interspersed plant and number of pistillate plant were studied under varying environments in kharif 2012-13. The experimental material consisted of four segregating F 2 populations for different characters. The results obtained from chi square test for genetics on sex expression in castor revealed that goodness of fit for all the characters, all environments and for all crosses under study bifurcated as 9:6:1 than normal dihybrid ratio. This ratio suggested the presence of polymeric gene interaction for this trait. Additional cycles of intermating in early segregating generation are suggested for the exploitation of such gene action. In both the environments sex expression was found to be governed by polymeric gene action irrespective of the nature of F 1 plants. However, number of interspersed staminate flowers (ISF) was found more in the irrigated environments (E 2 ) as compared to rainfed condition. Thus, irrigated condition might be proved helpful in maintaining plants with interspersed staminate flowers (ISF)

    Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer's disease.

    Get PDF
    Genetic factors do not seem to account fully for Alzheimer disease (AD) pathogenesis. There is evidence for the contribution of environmental factors, whose effect may be mediated by epigenetic mechanisms. Epigenetics involves the regulation of gene expression independently of DNA sequence and these epigenetic changes are influenced by age and environmental factors, with DNA methylation being one of the best characterized epigenetic mechanisms. The human genome is predominantly methylated on CpG motifs, which results in gene silencing; however methylation within the body of the gene may mark active transcription. There is evidence suggesting an involvement of environmental factors in the pathogenesis of Alzheimer's disease (AD), which prompted our study examining DNA methylation in this disorder

    Association of atrial fibrillation and obstructive sleep apnea.

    Get PDF
    BACKGROUND: Obstructive sleep apnea (OSA) is associated with recurrent atrial fibrillation (AF) after electrocardioversion. OSA is highly prevalent in patients who are male, obese, and/or hypertensive, but its prevalence in patients with AF is unknown. METHODS AND RESULTS: We prospectively studied consecutive patients undergoing electrocardioversion for AF (n=151) and consecutive patients without past or current AF referred to a general cardiology practice (n=312). OSA was diagnosed with the Berlin questionnaire, which is validated to identify patients with OSA. We also assessed its accuracy compared with polysomnography in a sample of the study population. Groups were compared with the 2-tailed t, Wilcoxon, and chi2 tests. Logistic regression modeled the association of AF and OSA after adjustment for relevant covariates. Patients in each group had similar age, gender, body mass index, and rates of diabetes, hypertension, and congestive heart failure. The questionnaire performed with 0.86 sensitivity, 0.89 specificity, and 0.97 positive predictive value in our sample. The proportion of patients with OSA was significantly higher in the AF group than in the general cardiology group (49% versus 32%, P=0.0004). The adjusted odds ratio for the association between AF and OSA was 2.19 (95% CI 1.40 to 3.42, P=0.0006). CONCLUSIONS: The novel finding of this study is that a strong association exists between OSA and AF, such that OSA is strikingly more prevalent in patients with AF than in high-risk patients with multiple other cardiovascular diseases. The coinciding epidemics of obesity and AF underscore the clinical importance of these results

    Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study

    Get PDF
    Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present
    • …
    corecore